By considering the vertices as hinges, Thomas proves [1] that any convex quadrilateral
can be deformed into a cyclic quadrilateral (having the same side lengths).

In any convex quadrilateral, Ptolemy’s Inequality tells us that the product of the
diagonals is less than or equal to the sum of the products of the lengths of opposite
sides. In a cyclic quadrilateral, Ptolemy’s Theorem, tells us that the product of the
diagonals equals the sum of the products of the lengths of opposite sides. Given our four
appropriate segments, a, b, ¢, d, there are six ways to arrange them in a convex
quadrilateral. By symmetry, only three of these are distinct.

We show these three possibilities with corresponding bound on the product of the
diagonals, AC - BD:

(AB,BC,CD,DA) = (a,b,c,d); AC - BD < ac + bd

(AB,BC,CD,DA) = (a,b,d,c); AC - BD < ad + bc

(AB,BC,CD,DA) = (a,c,b,d); AC - BD < ab+ cd.

The third case gives the largest possible value (because we've placed the two largest
sides opposite one another).

Algebraically,

ac+bd<ab+cd < 0<(a—d)(b—rc)

which is true by the given ordering, and

ad+bc<ab+cd < 0<(a—c)(b—d)

which is also true by the given ordering.

Summarizing: when the four segments are arranged in a quadrilateral ABC D, the
product of the diagonals is < AB - CD + BC - AD; the largest possible value for
AB-CD+ BC - AD is ab + cd, which is achieved when a, b and ¢, d are opposite sides of
a cyclic quadrilateral.

Reference:

1. Peter, Thomas, Maximizing the Area of a Quadrilateral, The College Mathematics
Journal, Vol. 34, No. 4 (September 2003), pp. 315-316.

Also solved by Kenneth Korbin, New York, NY; David E. Manes, Oneonta,
NY, and the proposers.

5495: Proposed by D.M. Batinetu-Giurgiu, “Matei Basarab” National College,
Bucharest and Neculai Stanciu, “George Emil Palade” School Buziu, Romania

Let {zn}n>1, 1 =1, 2, = 1-V3I1- /Bl /(2n — D)L

Find:

) ( (n+1)2 n? )
lim — .
n—0oo \ "Hl/Tn1q YTy
Solution 1 by Moti Levy, Rehovot, Israel
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Using Stirling’s asymptotic formula, we have
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Solution 2 by Kee-Wai Lau, Hong Kong, China
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We show that the limit of the problem equals %.

We need the following knows results for positive integers n.
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where A and B are constants.

By (1) we have
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In fact by (4) we have
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Let f(n) =2Inn — Bn By (5), we obtain
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and (7) follows readily from (3),(5) and (4). By the mean value theorem, we have
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where ¢ is a number lying between f(n) and f(n + 1). By (6), both ef(»*1) and ef(®

n

(41?0’ e e _ € <1 Lo (ln_”))
n+1/xn_,’_1 n/xn 2 n ’

and our claim for the limit follows.
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Solution 3 by Bruno Salgueiro Fanego, Viveiro, Spain

We will use the lemma from Solution 3 to Problem 5398 that appeared in this Column
(see Nov. 2016 issue) that stated: “If the positive sequence (py) is such that
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Editor's comment : In addition to the above solution Bruno Salgueiro Fanego stated
that a more general form of the problem was published by the authors’ of 5495 in the
journal La Gaceta de la Real Sociedad Matemdtica Espanaola vol. 17 (3), 2014, pp.
523-524. (available at http://gaceta.rsme.es/abrir.phd?id=1218.) Therein they showed:

If {an}n>1 is a sequence of real positive numbers such that li_r>n (ant1 —an) =a #0,
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Letting a, = n and f(n) = {/(2n — 1)!! gives the desired result.




Solution 4 by Michel Bataille, Rouen, France
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To this end, we first recall that (2n — 1)!! = and the following asymptotic

expansion as n — oo:
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from which we readily deduce
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Consider the sequence {yy }n>2 defined by
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It follows that
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First, we deduce that In(u,) = In(n) + 2 — In(2) + o(1), hence u,, = e®(W+2-(2) . go(1)
and SO U, ~ M- % Second, the calculation of In(uy+1) — In(u,) easily leads to
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and the result follows.

Also solved by Paolo Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy; loannis D. Sfikas, National and Kapodistrian
University of Athens, Greece; Albert Stadler, Herrliberg, Switzerland;
Marian Ursarescu - Romania, and the proposers.

5496: Daniel Sitaru, “Theodor Costescu” National Economic College, Drobeta
Turnu-Severin, Mehedinti, Romania

Let a, b, c be real numbers such that 0 < a < b < ¢. Prove that:
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Solution 1 by Henry Ricardo, Westchester Area Math Circle, NY
For z > 0 we apply the known inequality €* >z +1toz=a—b,b— ¢, and a — ¢ to get
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et >a—b+1, e C>b—c+1, e >a—c+1,

respectively. Adding these inequalities yields

b e 4 e > 20 — 2¢ + 3. (1)
For x > y, we see that
eV > (2 /y)VW = x—y> JTyln(z/y) <= /Ty < (z —y)/(Inz — Iny), which is

the left-hand member of the logarithmic mean inequality. Thus we have, since
O<a<b<e,
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